Combinatorial Networks
Week 1, March 11-12

1 Notes on March 11

1.1 The Pigeonhole Principle

The Pigeonhole Principle If n objects are placed in k holes, where n > k,
there exists a box with more than one objects.

1.1. Theorem Given a simple graph on n vertices, there are two vertices of
the same degree.

Proof: Let G be a simple graph on n vertices. There no harm in assuming that G
has no vertex of degree 0, then the degree of any vertex must be in {1,...,n—1}.
Thus by P-P.(The Pigeonhole Principle), there must be two vertices of the same
degree.

Examples

1.2. Subsets with divisions Let [2n] = {1,2,...,2n}. Consider all the
subsets S C [2n], such that no distinct 4,j € S satisfying 7 | j. What is the
maximal number of | S |?

It’s obvious that ' = {n + 1,...,n + n} with n elements satisfies the desired
condition. We claim that this maximal number is n indeed. Assume that there
is a subset S of [2n] satisfying the condition but | S |> n+ 1. For any odd
a € [2n], let Cy = {a- 2%,k > 0} N [2n]. Since [2n] = Usejan),04¢Ca and there
are n such sets totally, by P-P., there exist distinct 7,5 € S N C, for some odd
a € [2n]. Hence either ¢ | j or j | 4, contradicts with the definition of S.

1.3. Theorem For any = € R and integer n > 0, there is a rational number
p/q, such that | z — p/q |< 1/ng.
Proof: Exercise.

1.4. Theorem(Erdos-Szekers) For any sequence of length mn + 1 distinct
real numbers ag, a1, ...amy, there is an increasing subsequence of length m + 1
or a decreasing subsequence of length n + 1.

Proof: For any 0 <14 < mn, let ¢t; denote the maximum length of an increasing
subsequence starting with a;. Assume all t; € {1,2,...,m}. For 1 < j < m,
define S; = {i : t; = j}. By P-P., there is jo such that | S;, |[>n+ 1.

Let ig < i1 < ... < iy € §j,. We claim that a;, > a;; > ... > a;,, so it’s
a decreasing subsequence of length n + 1. If it doesn’t hold, say, a;, > ai,,
by using the increasing subsequence of length jg starting with a;,, we get an
increasing subsequence of length jo + 1 starting with a;,. Contradiction!



Exercise Find a sequence of length mn such that there is no increasing sub-
sequence of length m + 1 nor decreasing subsequence of length n + 1.

1.2 Double Counting

1.5. Lemma For any simple graph G, ) . d(v) =2 | E(G) |.
Proof: For any vertex v and any edge e, define i(v,e) = 1if v ~ e, else i(v,e) = 0.
Note that

Z Zi(v,e) = Z Z i(v,€)
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It implies
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1.6. Theorem Let ¢t(n) be the number of divisors of n and

Then ¢(n) ~ H(n), as n — oo, where

n

H(n) =Y -

i=1

S| =

Proof: For any integer 4,7, if i | j, define d(i,7) = 1, else define d(i,j) = 0.
Then we have

J
() = d(i,j).
i=1
Since o o
DO di,g) =Y dii, ),
Jj=11i=1 =1 j=1
we have . . .
n
() = ZL;J = ”Z T O(n),
j=1 i=1 i=1
as n — oo.
It implies



1.3 Binomial Theorem
n __ - n 7
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Definition: For integer k, and polynomial f(x), let [2*]f be the coefficient in
the term in f(x).

1.7. Fact For any polynomials fi(x),..., fr(z), let

then for any integer n,

1.8. Fact
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1.9. Fact For all positive integer n,
n n n n
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Proof: Since
k k+1
/ Inx dxglnkg/ Inz dzx,
k—1 k



we get
n n+1
/ Inx dmﬁlnn!g/ Inz dz.
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That is,

n n+1 2
ln<ﬁ) +1§1nn!§ln<n+1> ln(2> ,
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n n+1 2
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which implies

Note that

Thus,

Remark: Stirling’s Formula

n n
n! ~ 27rn(7) , as mn — oo.
e

1.10. Theorem For 1l <k <n,

=0

Proof: For any = € (0, 1], note that
" /n
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and
1+ 2 <e”.

From them we can get

> ()=x (et

=0 =0



At last, let © = k/n, and substitute it into the formula above, then we get

>()=(3)

as desired.

1.11. Corollary
n\k n en\k
(7) = (;) <(%)
2 Notes on March 12

2.1. Binomial Theorem For any integer n > 0, and any real z,

1+a) =Y (Z) ",
k=0
2.2. Newton’s Binomial Theorem For any real r, and any real x € (—1,1),
-

Here,

2.3. Corollary Let z € (—1,1), and r = —n, where integer n > 0,

(L40)" = i (_kn)xk _ f]—l)’“ (n +Z— 1)mk_

k=0

2.1 Inclusion-Exclusion

2.4. Theorem(Inclusion-Exclusion) For subsets 44, ..., 4, C X,

Ix\JAil= D =4

i=1 IC[n] iel



Proof: For any subset A C X, define its characteristic function fa(z), where
fa(x)=1ifxz € A, else fa(x) =0, then

S fale) = A

zeX

Consider

2Tl fa@) =3 ()" ] fa (@)

1 IC([n] iel
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Note that J];.; fa,(x) is the characteristic function of [;.; A;, and that F'(x)

is the characteristic function of X \|J;-_; A;, since F(z) = 1 if and only if z ¢ A;
for all i = 1,2,...,n, and else F(x) = 0. So by what have observed before,

IX\UA = F(z)
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2.5. Corollary

IUA |—|X|—|X\U\— > I 4

i=1 0#IC[n] iel

Definition: A derangement 7 : [n] — [n] is a bijection(permutation) such
that (i) # ¢ for all ¢ € [n].

2.6. Theorem Let D,, be the set of all derangement from [r] to [n], then

| D |[=n

1=0

Proof: Let X be the set of all the bijections from [n] to [r], and for each i € [n],
let A; be the set {m € X : w(i) = i}.



Since D,, = X \ U;_; A, and for each I € [n], | (\;c; Ai |= (n— | I |)!, then by
Inclusion-Exclusion, we get

| Dn |= Z (=" ﬂ Ai|= z:(—l)]C (Z) (n—k)!= n!Z (_le)l
k=0 i=0

IC[n] i€l

2.7. Corollary

|
\Dn|~&, as n — oo.
e

Exercise Let ¢(n) be the number of integers m € [n] relatively prime to n.
If n = p{*...py*, where ay,...,a; are positive integers and py, ..., ps are different

primes, then
t
1
ga(n):nl | (1)
i=1 pi

2.8. Theorem Suppose that m,n are positive integers with m > n, then the
number of surjections from [m] to [n] is

Zn:(—l)’f(;‘) (n— k)™,

k=0
P;loof: Let X ={f:[m] — [n]}, and A; = {f : [m] — [n]\ {i}} for each i € [n].
Then

X\ U A; = {all surjections from [m] to [n]} .
i=1

By Inclusion-Exclusion,

VU= X A= (e ke
0

i=1 IC[n) i€l k=

2.2 Generating Function

Definition: Given {a,}n>0, f(z) £, 5o anz™ is called the generating func-
tion of {an }n>o0- B

Addtion: f(z) +g(x) =>,>0(an + bp)a™ ;

Multiplying: f(2)g(z) = >_,,5¢ cna™, where c, =37, . a;b;.



Definition: A triangulation of n-gon, is that to join the vertices to divide this
n-gon into triangles with intersecting only at vertices. Let b,,_1 is the number
of triangulations of n-gon where n > 3 and b; £ 1, by £ 0.

These numbers by, b1, ba, ..., are called Catalan numbers.

2.9. Theorem Foralln>1,
1/2n—2
b, = — .
"o ( n—1 )
Proof: By the definition of triangulation and b,,_1, where n > 3,

bno1 = bi—abn_is1 .
=3

Since b; = 1 and by = 0, it implies for k£ > 2,

k
by, = Zbibk,i )
=0

Let f(z) be the generating function of {by}r>0, that is,
[eS] 0o ook
flz) = Zbkfﬂk =z+ Zbkxk =z + Zzbibkfixk =z + f(x)f(2).
k=0 k=2 k=0 i=0
Thus f2(x) — f(z) + = = 0, and since by = f(0) = 0, which implies

flx) = 1_7 V1-dzx )

By Newton’s Binomial Theorem,

Lo1E ) — (2k —2)!
f@)=5-3 kz_% <k) 0% =0 i

Hence

Exercise Let p be a positive integer, prove that

if p is odd,
Uals S o Na
i=0

IC[n]1<ITI<p iel

if p is even,

Jaz > oAl

IC[n),1<|11<p iel



