
Combinatorial Networks
Week 1, March 11-12

1 Notes on March 11

1.1 The Pigeonhole Principle

The Pigeonhole Principle If n objects are placed in k holes, where n > k,
there exists a box with more than one objects.

1.1. Theorem Given a simple graph on n vertices, there are two vertices of
the same degree.
Proof: Let G be a simple graph on n vertices. There no harm in assuming that G
has no vertex of degree 0, then the degree of any vertex must be in {1, ..., n−1}.
Thus by P-P.(The Pigeonhole Principle), there must be two vertices of the same
degree.

Examples

1.2. Subsets with divisions Let [2n] = {1, 2, ..., 2n}. Consider all the
subsets S ⊂ [2n], such that no distinct i, j ∈ S satisfying i | j. What is the
maximal number of | S |?
It’s obvious that T = {n + 1, ..., n + n} with n elements satisfies the desired
condition. We claim that this maximal number is n indeed. Assume that there
is a subset S of [2n] satisfying the condition but | S |≥ n+ 1. For any odd
a ∈ [2n], let Ca = {a · 2k, k ≥ 0} ∩ [2n]. Since [2n] = ∪a∈[2n],oddCa and there
are n such sets totally, by P-P., there exist distinct i, j ∈ S ∩ Ca for some odd
a ∈ [2n]. Hence either i | j or j | i, contradicts with the definition of S.

1.3. Theorem For any x ∈ R and integer n > 0, there is a rational number
p/q, such that | x− p/q |< 1/nq.
Proof: Exercise.

1.4. Theorem(Erdös-Szekers) For any sequence of length mn+ 1 distinct
real numbers a0, a1, ...amn, there is an increasing subsequence of length m + 1
or a decreasing subsequence of length n+ 1.
Proof: For any 0 ≤ i ≤ mn, let ti denote the maximum length of an increasing
subsequence starting with ai. Assume all ti ∈ {1, 2, ...,m}. For 1 ≤ j ≤ m,
define Sj = {i : ti = j}. By P-P., there is j0 such that | Sj0 |≥ n+ 1.
Let i0 < i1 < ... < in ∈ Sj0 . We claim that ai0 ≥ ai1 ≥ ... ≥ ain , so it’s
a decreasing subsequence of length n + 1. If it doesn’t hold, say, ai0 > ai1 ,
by using the increasing subsequence of length j0 starting with ai1 , we get an
increasing subsequence of length j0 + 1 starting with ai0 . Contradiction!
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Exercise Find a sequence of length mn such that there is no increasing sub-
sequence of length m+ 1 nor decreasing subsequence of length n+ 1.

1.2 Double Counting

1.5. Lemma For any simple graph G,
∑

v∈V d(v) = 2 | E(G) |.
Proof: For any vertex v and any edge e, define i(v, e) = 1 if v ∼ e, else i(v, e) = 0.
Note that ∑

v∈V

∑
e∈E

i(v, e) =
∑
e∈E

∑
v∈V

i(v, e)

.
It implies ∑

v∈V
d(v) =

∑
e∈E

2 = 2 | E(G) |

.

�

1.6. Theorem Let t(n) be the number of divisors of n and

t̄(n) =
1

n

n∑
j=1

t(j),

Then t̄(n) ∼ H(n), as n→∞, where

H(n) =

n∑
i=1

1

i
.

Proof: For any integer i, j, if i | j, define d(i, j) = 1, else define d(i, j) = 0.
Then we have

t(j) =

j∑
i=1

d(i, j).

Since
n∑

j=1

n∑
i=1

d(i, j) =

n∑
i=1

n∑
j=1

d(i, j),

we have
n∑

j=1

t(j) =

n∑
i=1

bn
i
c = n

n∑
i=1

1

i
+O(n),

as n→∞.
It implies

t̄(n) =
1

n

n∑
j=1

t(j) = H(n) +O(1) ∼ H(n).

�
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1.3 Binomial Theorem

(1 + x)n =

n∑
i=0

(
n

i

)
xi.

Definition: For integer k, and polynomial f(x), let [xk]f be the coefficient in
the term in f(x).

1.7. Fact For any polynomials f1(x), ..., fk(x), let

f(x) =

k∏
i=1

fi(x),

then for any integer n,

[xn]f =
∑

i1+...+ik=n

k∏
j=1

[xij ]fj .

1.8. Fact (
2n

n

)
=

n∑
i=0

(
n

i

)2

.

Proof: (
2n

n

)
= [xn](1 + x)2n =

∑
i+j=n

([xi](1 + x)n)([xj ](1 + x)n)

=
∑

i+j=n

(
n

i

)(
n

j

)

=

n∑
i=0

(
n

i

)2

�

1.9. Fact For all positive integer n,

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
.

Proof: Since ∫ k

k−1
lnx dx ≤ ln k ≤

∫ k+1

k

lnx dx,
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we get ∫ n

1

lnx dx ≤ lnn! ≤
∫ n+1

2

lnx dx.

That is,

ln
(n
e

)n
+ 1 ≤ lnn! ≤ ln

(
n+ 1

e

)n+1

− ln

(
2

e

)2

,

which implies

e
(n
e

)n
≤ n! ≤

(
n+ 1

e

)n+1 (e
2

)2
.

Note that (
n+ 1

e

)n+1

=
(n
e

)n+1
(

1 +
1

n

)n+1

≤ 4
(n
e

)n+1

.

Thus,

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
�

Remark: Stirling’s Formula

n! ∼
√

2πn
(n
e

)n
, as n→∞.

1.10. Theorem For 1 ≤ k ≤ n,

k∑
i=0

(
n

k

)
≤
(en
k

)k
.

Proof: For any x ∈ (0, 1], note that

x−k
k∑

i=0

(
n

k

)
xi ≤ x−k(1 + x)n

and
1 + x ≤ ex.

From them we can get

k∑
i=0

(
n

k

)
≤

k∑
i=0

(
n

k

)
xi−k ≤ (1 + x)n

xk
≤ enx

xk
.
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At last, let x = k/n, and substitute it into the formula above, then we get

k∑
i=0

(
n

k

)
≤
(en
k

)k
,

as desired.

�

1.11. Corollary (n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

2 Notes on March 12

2.1. Binomial Theorem For any integer n > 0, and any real x,

(1 + x)n =

n∑
k=0

(
n

k

)
xk.

2.2. Newton’s Binomial Theorem For any real r, and any real x ∈ (−1, 1),

(1 + x)n =

∞∑
k=0

(
n

k

)
xk.

Here, (
r

k

)
=
r(r − 1)...(r − k + 1)

k!
.

2.3. Corollary Let x ∈ (−1, 1), and r = −n, where integer n > 0,

(1 + x)−n =

∞∑
k=0

(
−n
k

)
xk =

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk.

(1− x)−n =

∞∑
k=0

(
n+ k − 1

k

)
xk.

2.1 Inclusion-Exclusion

2.4. Theorem(Inclusion-Exclusion) For subsets A1, ..., An ⊂ X,

| X \
n⋃

i=1

Ai |=
∑
I⊂[n]

(−1)|I| |
⋂
i∈I

Ai | .
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Proof: For any subset A ⊂ X, define its characteristic function fA(x), where
fA(x) = 1 if x ∈ A, else fA(x) = 0, then∑

x∈X
fA(x) =| A | .

Consider

F (x) ,
n∏

i=1

(1− fAi(x)) =
∑
I⊂[n]

(−1)|I|
∏
i∈I

fAi(x).

Note that
∏

i∈I fAi(x) is the characteristic function of
⋂

i∈I Ai, and that F (x)
is the characteristic function of X \

⋃n
i=1Ai, since F (x) = 1 if and only if x /∈ Ai

for all i = 1, 2, ..., n, and else F (x) = 0. So by what have observed before,

| X \
n⋃

i=1

Ai | =
∑
x∈X

F (x)

=
∑
x∈X

∑
I⊂[n]

(−1)|I|
∏
i∈I

fAi
(x)

=
∑
I⊂[n]

(−1)|I|
∑
x∈X

∏
i∈I

fAi
(x)

=
∑
I⊂[n]

(−1)|I| |
⋂
i∈I

Ai |

�

2.5. Corollary

|
n⋃

i=1

Ai |=| X | − | X \
n⋃

i=1

|=
∑
∅6=I⊂[n]

(−1)|I|+1 |
⋂
i∈I

Ai | .

Definition: A derangement π : [n] → [n] is a bijection(permutation) such
that π(i) 6= i for all i ∈ [n].

2.6. Theorem Let Dn be the set of all derangement from [n] to [n], then

| Dn |= n!

n∑
i=0

(−1)i

i!
.

Proof: Let X be the set of all the bijections from [n] to [n], and for each i ∈ [n],
let Ai be the set {π ∈ X : π(i) = i}.

6



Since Dn = X \
⋃n

i=1Ai, and for each I ∈ [n], |
⋂

i∈I Ai |= (n− | I |)! , then by
Inclusion-Exclusion, we get

| Dn |=
∑
I⊂[n]

(−1)|I| |
⋂
i∈I

Ai |=
n∑

k=0

(−1)k
(
n

k

)
(n− k)! = n!

n∑
i=0

(−1)i

i!
.

�

2.7. Corollary

| Dn |∼
n!

e
, as n→∞.

Exercise Let ϕ(n) be the number of integers m ∈ [n] relatively prime to n.
If n = pa1

1 ...p
at
t , where a1, ..., at are positive integers and p1, ..., pt are different

primes, then

ϕ(n) = n

t∏
i=1

(
1− 1

pi

)
.

2.8. Theorem Suppose that m,n are positive integers with m ≥ n, then the
number of surjections from [m] to [n] is

n∑
k=0

(−1)k
(
n

k

)
(n− k)m.

Proof: Let X = {f : [m]→ [n]}, and Ai = {f : [m]→ [n] \ {i}} for each i ∈ [n].
Then

X \
n⋃

i=1

Ai = {all surjections from [m] to [n]} .

By Inclusion-Exclusion,

| X \
n⋃

i=1

Ai |=
∑
I⊂[n]

(−1)|I| |
⋂
i∈I

Ai |=
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

�

2.2 Generating Function

Definition: Given {an}n≥0, f(x) ,
∑

n≥0 anx
n is called the generating func-

tion of {an}n≥0.
Addtion: f(x) + g(x) =

∑
n≥0(an + bn)xn ;

Multiplying: f(x)g(x) =
∑

n≥0 cnx
n, where cn =

∑
i+j=n aibj .
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Definition: A triangulation of n-gon, is that to join the vertices to divide this
n-gon into triangles with intersecting only at vertices. Let bn−1 is the number
of triangulations of n-gon where n ≥ 3 and b1 , 1, b0 , 0.
These numbers b0, b1, b2, ..., are called Catalan numbers.

2.9. Theorem For all n ≥ 1,

bn =
1

n

(
2n− 2

n− 1

)
.

Proof: By the definition of triangulation and bn−1, where n ≥ 3,

bn−1 =

n∑
i=3

bi−2bn−i+1 .

Since b1 = 1 and b0 = 0, it implies for k ≥ 2,

bk =

k∑
i=0

bibk−i .

Let f(x) be the generating function of {bk}k≥0, that is,

f(x) =

∞∑
k=0

bkx
k = x+

∞∑
k=2

bkx
k = x+

∞∑
k=0

k∑
i=0

bibk−ix
k = x+ f(x)f(x).

Thus f2(x)− f(x) + x = 0, and since b0 = f(0) = 0, which implies

f(x) =
1−
√

1− 4x

2
.

By Newton’s Binomial Theorem,

f(x) =
1

2
− 1

2

∞∑
k=0

( 1
2

k

)
(−4)kxk =

∞∑
k=1

(2k − 2)!

k!(k − 1)!
xk.

Hence

bk =
(2k − 2)!

k!(k − 1)!
=

1

k

(
2k − 2

k − 1

)
.

�

Exercise Let p be a positive integer, prove that
if p is odd,

|
n⋃

i=0

Ai |≤
∑

I⊂[n],1≤|I|≤p

(−1)|I|+1 |
⋂
i∈I

Ai |;

if p is even,

|
n⋃

i=0

Ai |≥
∑

I⊂[n],1≤|I|≤p

(−1)|I|+1 |
⋂
i∈I

Ai | .
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